Industrial Analysis

X-MET5000 for:

The Business of $Science^{TM}$

Industrial Analysis

X-MET5000

Lightweight, hand-held XRF analyzer for quality control and material verification

PMI - Positive Material Identification

lasts for one day!

Certified **IP54** splash and dust proof!

Industrial Analysis

X-MET5000

The NEW X-MET5000 enables more accurate and faster verification of critical materials in the PMI testing process along the whole metal manufacturing supply chain -

- inspection of incoming goods
- testing during production and
- manufacturing of goods

Important tool in routine maintenance in any plant when building up a power plant or petrochemical plant

Proven design based on over 35 years experience in the field of portable hand-held XRF analyzers

Field conditions are tough on PMI tools!

- An analyzer must be able to measure the alloying elements at very low concentrations (e.g. Ti in stainless steels at the level of 0.05%)
- Material range is often very wide
- The analyzer must be robust and easy to use
- Fast, accurate results are a pre-requisite
- For most applications calibration of the unit must be traceable
- For these reasons EDXRF is the preferred measurement technique when concentrations of light elements such as Carbon are not of interest

Industrial Analysis

The analyzer of choice in all conditions, on-site or in-field

- The material to be inspected can be difficult to access (e.g. a refinery platform)
 - The X-MET5000T analyzer is battery operated, compact, robust and withstands harsh use
- The material to be inspected can be hot (e.g. like a tube in a power plant)
 - Integrated heat shield allows the measurement of surfaces up to 400°C / 750°F for extended periods
- The weld material often needs to be verified from narrow seam (material around the seam must be excluded)
 - The X-MET5000 enables the analysis of narrow weld seams down to 2 mm

Industrial Analysis

Analyze large or small samples structures like bolts, thin tubes or honeycomb in seconds – just point and shoot

- X-MET5000 compensates for the shape of sample
- Inspect pipes and welds for corrosion resistance and pressure equipment for alloy composition
- Wires of less than 1mm in diameter can be identified in seconds
- Avoid material mix-ups
- High speed averaging function up to 50 successive measurements for fast effortless batch evaluation

Industrial Analysis

PMI Cannot be Easier

- 1) Name your sample
- 2) Measure it
- 3) Produce the PMI report

- A practically unlimited number of grades can be stored in the analyzer
- Recording of results can be automated if required
- Results can be read by a PC
- An unlimited number of results can be stored for further processing

Rugged, reliable and durable tool

- Certified IP54 splash and dust proof verified by third party (NEMA 3)
- Withstands all weather conditions from -10°C to +50°C
- Battery operating time of one working day
- Minimal service costs and down time
- CE, cCSAus certified
- 2 year Instrument warranty; including X-ray tube, excluding consumables

The Business of $Science^{TM}$

Grade Identification and highly accurate alloy analysis in seconds

- Measure known or unknown sample with ease - Just point, shoot and read the result
- Grade Identification in 2-5 seconds
- Valuable elements (e.g. Ni, Cu and Mo) in 5 – 10 seconds
- 304/321 separation or Grade 7/CPTi in less than 5 seconds

Safe use during analysis

The Business of ScienceTM

Radiation Safety:

- Password protection
- IR proximity sensor
- Failsafe warning lights

OI's PentaPIN[™] detector provides faster analysis and lower detection limits

- As example, a 10 second analysis produces the equivalent result to that of a 30 second analysis made using a standard Si-PIN detector
- It will even separate out the small amounts of Hf and Ta in Nickel alloys in seconds

- PentaPIN[™] Detector
 - Based on Oxford patented PentaFET[®] technology
 - High resolution high count rate SiPIN detector
- Very low detection limits
 - Improved precision from higher count rate
 - Better inter-element correction due to improved resolution and

Industrial Analysis

PDA based technology for flexibility and simplicity

- Bright color touch screen display visible in any lighting condition
- Easy-to-use menu system
- Full Microsoft Windows[®]
 compatibility
- Memory card for easy data transfer and back-up (no additional software necessary)
- Data transfer via supplied USB cable
 or wirelessly by WiFi or Bluetooth

PDA = Personal Digital Assistant

Industrial Analysis

Computer

- HP PDA with Windows Mobile 5.0
- Key locked to prevent unintended removal
- 128 MB Internal memory
- Min. 1 GB Removable memory
- Capable of holding > 100,000 results and spectra

Easy reporting - time saving and trouble-free

- Results and spectra can be stored on a SD memory card
- Recording of results can be automated if desired
- Data can be downloaded to a PC using either
 - Memory card reader (Standard accessory)
 - Microsoft Active Sync over the USB cable
 - Wirelessly, using the built-in Bluetooth capability
 - Practically unlimited number of results can be stored for future processing
- PC Report Generator for easy and versatile formatting of final QC reports available
- Microsoft Excel and Access can be used to store and process the data and to generate custom reports

The Business of $Science^{TM}$

Industrial Analysis

Long battery life

Battery lasts for one working day!

• Rechargeable, removable inside handle

- Li-lon batteries (Quantity 2)
- Typical duty cycle: 6 hours of operation each
- 110/230V 50/60 Hz battery charger, including AC adaptor

The Business of $Science^{TM}$

Short learning curve

- Intuitive user interface makes it possible to learn basic functions in a few minutes
- Minimal training is required
- Our network of specialists is ready to provide training for the more advanced features of the analyzer

Three modes of operation

Assay and Grade library ID

uses two synchronized analytical modes which automatically select the correct mode to give the best analytical result.

Empirical Assay Calibration mode produces fast, accurate analysis even at low concentrations. Traceable reference standards establish the calibration. This method is useful in situations where all main elements present in a sample cannot be analyzed (e.g. metallic carbides, Ti alloys, Al bronzes).

Fundamental Parameters (FP) is a universal standardless calibration where practically any combination of physically measurable element can be analyzed with good accuracy. FP can measure up to 30 elements between Ti-U regardless of concentration. The elements analyzed can be customized for specific applications.

These two modes run smoothly together even when the user has no information about the material's composition.

Three modes of operation

Direct spectral identification

2

is based on the comparison of known standard spectra and the measured spectrum of the sample. Material can be identified even when no analytical assay data is available.

PASS/FAIL

mode offers a convenient, fast way to sort material e.g. during delivery inspection

X-ray tube for optimized performance and maximum safety

Proprietary miniature X-ray tube

- No isotope means
- Non-regulated shipping
- No leak testing required
- Easy, low cost disposal
- Low cost registration
 - (varies by region)

The Business of Science regulation

Industrial Analysis

Interface Languages

 User Interface is available in: English French German Italian Japanese Korean Polish Portugese Russian 	Settings > Languages Available languages ● English ● 简体中文 ● 繁體中文 ● 登국어 ● 日本語 ● Русский ● Français ● Deutsch ● Español ● Italiano ● Polski	
 Russian Simplified Chinese 		$\cap \cap$
- Trad Chinese	<< Return	
		JU

Extensive and open grade library

As standard X-MET5000 has an integrated grade library containing:

- Nickel Alloys
- Stainless Steels
- Cobalt Alloys
- Low Alloy Steel
- Tool Steels
- Copper Alloys
- Titanium Alloys
- Zirconium Alloys
- Aluminum Alloys (heavy alloying elements)

- The X-MET5000 is capable of storing thousands of grade identifications
- Easy to add new alloys and to create a unique grade library
- The precision of the grades can be adjusted to prevent false alarms which may occur during short measurement times

Easy editing of the grade tables

Easy

- modification of the grade library
- addition of new alloys
- renaming of alloys
- In addition, the precision of the grades can be adjusted to prevent false alarms which may occur during short measurement times

lic Grad	le	<	÷	6	
Mone	l 500				
Name	Lower limit	Upper limit			
Ti	0.35000	0.85000			
Mn		1.50000			
Fe		2.00000			
Cu	27.00000	33.00000			
Мо		1.00000			
			+		
w Ele	ment	Remove Ele	eme	ent	
OK		Cance	el		
	Vame Ti An Ee Cu Mo W Ele	Monel 500 Lower Imit 0.35000 In 27.00000 Mo WEIEment OK	Monel 500 Lower Upper Imit limit ii 0.35000 0.85000 In 1.50000 In 2.00000 In 27.00000 33.00000 In 1.00000 In 1.00000 In 1.00000 In 1.00000 In 1.00000 In 1.00000 In 1.00000	Monel 500 Lower Upper Imit limit ii 0.35000 0.85000 In 1.50000 In 2.00000 In 27.00000 33.00000 In 1.00000 In 1.00000 In In In In In In In In 1.50000 In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In In	Monel 500 Lower Upper Imit limit ii 0.35000 ▲ An 1.50000 ▲ ie 2.00000 ▲ ie 1.50000 ▲ iw 27.00000 33.00000 ↓ Weilement Remove Element ▼ OK Cancel

The Business of $Science^{TM}$

Industrial Analysis

Optical Emission Spectrometry

X-ray Fluorescence

Delivered as "turn-key" analysis tool

- Each delivery includes a calibration certificate
- Instrument performance is guaranteed by measuring alloy specific check samples (provided with each instrument)

- Calibrations can be customized using e-mail
- It is not necessary to send the unit to the factory for calibration

Optional Software

- Empirical Calibration enables user to create a calibration from a set of standards for unique applications. Also allows data acquisition and analysis using a PC.
- PC Spectral Display enables viewing and analysis of samples spectra on a user's PC
- PC Report Generator enables the creation of specific reports containing user selected information and format

95.5 - 100

0.65

0-2.5

0.04

0 - 0.55

0.22

0 - 1.6

0,18

0 - 0.55

0.05

Range, wt.% Average Error, wt.9

Industrial Analysis

X-MET5000

Typical Performance for different types of Alloys Alloy Mode

Aluminum alloys "	'Aluminum " e	empirical as:	say method											
Element	Ni	Cu	Zn	Mn	Fe	Cr								
Range, wt.%	0 - 2.2	0-6.9	0-5.9	0 - 1.3	0 - 1.22	0-0.3								
Average Error, wt.%	0,02	0,1	0,02	0,03	0,03	0,02								
Cabaltallaus "O (
Cobait alloys Cob	palt" empirica	al assay met	hod	-										
Element	C0	Cr	Mn	Fe	NI 0.10.00.5	Mo	ND	W						
Range	30.8 - 07	19.0 - 32.0	0.2 - 1.0	0.30-2.3	0.12 - 23.0	0-7.5	U - 2.4	0.09 - 14.5						
Average Error, wt.%	0,9	0,34	0,13	0,15	0,23	0,13	0,03	0,19						
opper alloys "Copper" empirical assay method														
Element	Cu	Fe	Ni	Zn	Pb	Sn	Mn							
Range	58.5 - 99.9	0 - 4.6	0 - 29.5	0 - 40.1	0 - 9.7	0-9.7	0 - 2.8							
Average Error, wt.%	1	0,03	0,06	0,25	0,15	0,11	0,02							
	-	-					•							
Low alloy steels "?	Low Alloy ste	el" empirica	l assay meth	od										
Element	Fe	V	Cr	Mn	Ni	Cu	Mo							
Range	89.0 - 99.9	0 - 0.8	0-8.3	0 - 1.1	0 - 1.7	0 - 0.21	0 - 0.94							
Average Error, wt.%	0,40	0,02	0,08	0,06	0,06	0,02	0,02							
Nickel alloys "Nick	el" empirical	lassav meth	od											
Element	Ni	Ti	Cr	Mn	Fe	Co	Cu	Nb	Мо	w				
Range	34.1 - 99.6	0-3.2	0 - 30.1	0 - 1.6	0 - 41.3	0 - 20.0	0 - 32.1	0 - 4.9	0 - 27.9	0 - 14.2				
Average Error, wt.%	0.7	0.06	0.25	0.09	0.19	0.07	0.16	0.02	0.14	0.08				
Stainless steels "S	Stainless ~ em	pirical assaj	y method								-			
Element	Fe	Ti	v	Cr	Mn	Co	Ni	Cu	Nb	Mo	w			
Range	38.8 - 86	0 - 2.2	0 - 0.26	0.09 - 24.5	0 - 15.1	0 - 17.3	0.23 - 36.1	0 - 3.3	0 - 0.65	0 - 7.3	0 - 2.6			
Average Error, wt.%	1	0,02	0,03	0,27	0,10	0,18	0,22	0,05	0,02	0,06	0,03			
Titaniana diana "T	itanium" omr	iria al array	method											
Titanium alloys	nanun enp	V V	method Cr	Ea	Cu	Мо	7.	Nb	50	P.d.	Ma			
Element	00.4 00	V		Fe O		M0	21	ND 0.70	311	Fu 0.0.10	MII			
Range	80.4 - 99	0-5.0	0.05	0 - 1.9	0-2.4	0 - 10.4	0.02	0-7.0	0.00	0-0.18	0-2			
Average Error, WL /6		0,11	0,00	0,00	0,02	0,00	0,03	0,02	0,08	0,02	0,03			
Tool steels 'Tool S	teel" empiric	al assay me	thod											
Element	Fe	V	Cr	Mn	Co	Ni	Mo	w						
Range	69.5 - 95.9	0 - 4.9	0.22 - 11.4	0.20 - 2.0	0 - 8.1	0 - 1.5	0.05 - 9.6	0 - 18.0						
Average Error, wt.%	0,4	0,05	0,12	0,08	0,06	0,05	0,05	0,1						
Zirconium alloys 🕺	'Zirconium" e	mpirical ass	ay method											
Element	Cu	7r	Nb	Mo	- Sn									

Average Error:

Average deviation from reference value when large set of test samples are measured using 15s measuring time with multiple production instruments. Notice that performance of individual instrument may differ slightly.

Range: Concentration range of the measured test samples (Same as calibration range)

This performance sheet is valid for X-MET5000 instruments with SW version 1.1 or newer

Industrial Analysis

X-MET5000

Typical Performance for different types of Alloys Alloy FP

Cobalt alloys													
Element	Co	Cr	Mn	Fe	Ni	Мо	Nb	w					
Range	36.8 - 67	19.6 - 32.5	0.2 - 1.6	0.39 - 2.3	0.12 - 23.5	0 - 7.5	0 - 2.4	0.09 - 14.5					
Average Error, wt.%	0,9	1	0,14	0,16	0,14	0,15	0,05	0,32					

Copper alloys	Copper alloys													
Element	Cu	Fe	Ni	Zn	Pb	Sn	Mn							
Range	58.5 - 99.9	0 - 4.6	0 - 29.5	0 - 40.1	0 - 9.7	0 - 9.7	0 - 2.8							
Average Error, wt.%	2,7	0,21	0,09	0,19	0,17	0,25	0,02							

Low alloy steels													
Element	Fe	v	Cr	Mn	Ni	Cu	Mo						
Range	89.0 - 99.9	0 - 0.8	0 - 8.3	0 - 1.1	0 - 1.7	0 - 0.21	0 - 0.94						
Average Error, wt.%	0,52	0,02	0,21	0,18	0,11	0,05	0,03						

Nickel alloys														
Element	Ni	Ti	Cr	Mn	Fe	Co	Cu	Nb	Mo	w				
Range	34.1 - 99.6	0 - 3.2	0 - 30.1	0 - 1.6	0 - 41.3	0 - 20.0	0 - 32.1	0-4.9	0 - 27.9	0 - 14.2				
Average Error, wt.%	1	0,06	0,42	0,08	0,31	0,07	0,12	0,03	0,15	0,09				

Stainless steels													
Element	Fe	Ti	v	Cr	Mn	Co	Ni	Cu	Nb	Mo	w		
Range	38.8 - 86	0 - 2.2	0 - 0.26	0.09 - 24.5	0 - 15.1	0 - 17.3	0.23 - 36.1	0-3.3	0 - 0.65	0-7.3	0 - 2.6		
Average Error, wt.%	0,8	0,08	0,04	0,35	0,11	0,11	0,25	0,1	0,02	0,04	0,05		

Tool steels													
Element	Fe	v	Cr	Mn	Co	Ni	Mo	w					
Range	69.5 - 95.9	0 - 4.9	0.22 - 11.4	0.20 -2.0	0 - 8.1	0 - 1.5	0.05 - 9.6	0 - 18.0					
Average Error, wt.%	1,6	0,05	0,27	0,22	0,06	0,08	0,04	0,13					

Average Error:

Average deviation from reference value when large set of test samples are measured using 15s measuring time with multiple production instruments. Notice that performance of individual instrument may differ slightly.

Range:

Concentration range of the measured test samples (calibration range is 0-100% for all measured element in AlloyFP)

This performance sheet is valid for X-MET5000 instruments with SW version 1.1 or newer

Our global network provides support in local languages

- Technical phone support
- Factory trained personnel
- On-site repair services
- Training services
- Application support
- Global spare parts warehousing
- Re-certifications and recalibrations
- Post warranty local service contracts

